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SUMMARY 
A new finite element technique for the analysis of wave run-up is presented in this paper. In this finite element 
approach, the movement of the shoreline is expressed by that of the nodal points at the wave front, and an 
auto mesh generation technique is effectively used. The present method is tested by the comparison with the 
experimental result of a channel with uniform slope, and two numerical examples are reported to show the 
efficiency of this method. As a final example, the tsunami run-up caused by the 1983 Nihonkai-Chubu 
earthquake is analysed and compared with actual records of the flooded area. 

1. INTRODUCTION 

Wave run-up along a coast is an interesting and important engineering problem. For example, 
consider a tsunami. When the tsunami arrives at the coastline, the run-up of the tsunami wave 
towards the land causes tremendous damage to man-made structures. Therefore it is essential to 
be able to predict how far a tsunami will run up over the land area. There have been numerous 
analyses of this problem. Experimental studies were carried out by Ippen and Kulin,’ Kaplan,2 
K i ~ h i , ~  Iwagaki et u Z . , ~  Iwagaki,’ Camfield and Street,‘ Nakamura and Togashi’, and Togashi 
and N a k a r n ~ r a , ~  who proposed predictive equations based on their experimental results. Carrier 
and Greenspan,” Greenspan,” Shuto and Matsumura,I2  shut^'^, l4 and Grimshawl’ gave 
theoretical solutions to a limited extent. Most numerical studies were carried out by the method 
of characteristics or the finite difference method (see e.g. References 16-24). Finite element studies 
were done by Heitner and Housner2’ and Gopalakrishnan and Tung.26,27 However, most of the 
above studies were restricted to one-dimensional analysis because of the complicated character- 
istics of the problem. 

This paper presents a two-dimensional numerical analysis of wave run-up by the finite element 
method. In the analysis of wave run-up the finite element method is one of the most effective 
analytical tools because the complex geometry of a land boundary can be handled easily. 
However, the difficulty that arises in the application to wave run-up is the fact that the boundary 
will move. To pursue a moving boundary, a complicated algorithm must be introduced. This 
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paper presents a new finite element technique for the analysis of wave run-up. In this technique 
the movement of the shoreline is expressed by the movement of the nodal points at the wave front 
and the region where fluid exists always agrees with the region to be analysed. To express the 
movement, an automatic mesh generation technique is introduced and used effectively. With this 
method one can handle the moving boundary problem in a relatively easy manner. 

To examine the validity of the method, one-dimensional experiments on a channel with 
uniform slope are analysed and comparisons are made between the calculated and experimental 
results. Good agreement is found, showing that reasonable results can be obtained with the 
present rmethod. After several test examinations, two examples are analysed, namely one- 
dimensional wave run-up in a channel of non-uniform slope (composite slope) and two-dimen- 
sional run-up in a channel of wedge-shaped cross-section. Reasonable calculated results are 
obtained, showing that the present method is adaptable for the analysis of complex problems. As 
a final numerical example, the tsunami run-up caused by the 1983 Nihonkai-Chubu earthquake is 
analysed and compared with the actual records of the flooded area. 

2. FINITE ELEMENT EQUATION 

According to shallow water wave theory, the basic equations of wave run-up are the equation of 
motion, 

(1) 
and the equation of continuity, 

l i+Cut(h+~)I , i=O,  (2) 

u i  + uj ui, j + gq, i +f( u cos a)i = 0, 

where U i  is the mean velocity in the direction of the xi-co-ordinate, v ] ,  h and g are the water 
elevation relative to the still water level, the depth of water and the gravitational acceleration 
respectively,fis the coefficient of bottom friction and a is the angle of beach slope. 

The standard Galerkin finite element method is applied to equations (1) and (2) for spatial 
discretization and the selective lumping two-step explicit finite element method is employed for 
numerical integration in time. For the interpolation functions of velocity and water elevation, 
standard linear functions based on the three-node triangular finite element are used. Let UPi  and 
qp be the velocity in direction xi  and the water elevation at node p respectively. The following 
numerical integration procedure can be derived:28-32 

for the first step, 

(3) 

(4) 

n;i ap u n + l / 2 -  - f i a , u ; i - ( ~ t / 2 ) C K a @ y ,  j ~ ~ j ~ : i + g ~ a ~ , i r ~ ~ + ~ , ~ ( ~ c o s a ) ~ i l ,  

Ma,$ 112 = fi ap?i-(At/2){KaBv,iCu:i(h, +?;I+ u;i(hy + ?:)I >; 

fl.L. *1 S.W.L. 

Figure 1. Co-ordinate system 
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for the second step, 

n;i un+'- -h;i,,UBi n +  112 - A t [ K a p y , j U i J 1 / 2  ~ ~ ~ ' i 2 + ~ N , , , i ~ ~ + ' ~ 2 + f M a , ( U c o s ~ ) ~ ~ 1 ~ 2 ] ,  

n;iasq;+ 1 = h;i,,q;+ ' 1 2 -  At { K a p y ,  i C u:i+ (hp + 'I, " + ] I 2 ) +  un+lI2 pi (hy + $ + 112)1 1. 
(5) 

(6) 
Superscript n denotes the value at the nth time step. Ma,, K,,, and N,, are coefficients obtained 
from the discretization procedure by the finite element method. a,, expresses the lumped 
coefficient and A,, is the selective lumping coefficient, i.e. 

A,, = eM,, + (1 - e) M,, , (7) 
where e is the selective lumping parameter. The parameter usually takes a value about 
e=0-8-0.95 and the value of 0.9 is employed in the present paper. 

Using the selective lumping technique, which combines both lumped and unlumped coeffi- 
cients, a stable computation can be obtained and minimization of the error due to artificial 
damping can be realized.28 -32  

3. CALCULATION OF MOVING SHORELINE 

The initial finite element idealization is carried out at the still water level. The movement of the 
shoreline is expressed by the movement of the nodal points at the wave front and the region where 
fluid exists always agrees with the region to be analysed. According to this method, since the 
moving boundary is always the wave front at each time step, the explicit two-step scheme, i.e. the 
calculation of equations (3)-(6), can be applied. 

The method by which a nodal point moves is explained as follows. As shown in Figure 2, the 
shoreline moves a horizontal distance S in the time interval At. Using the velocity and acceler- 
ation of the water at the wave front, the next position of the nodal point can be calculated. 

The mean acceleration uy of each nodal point at the wave front in the period between t and 
t + At is described in the following manner. The average of the accelerations a' and at+& at times 
t and t + A t  is calculated as 

@=$(a: + a;+&'). (8) 

The Lagrangian acceleration of a nodal point at time t is computed as 

ui= U { +  u p {  j, (9) 

where ui denotes the acceleration of nodal point i in direction x i  and U {  is the Eulerian velocity of 
the water at the wave front. From equations (8) and (9) the movement distance Si in direction x i  
can be calculated as 

si = U P A ~  ++ (10) 

Wave profile at t+At - 

/ 

Figure 2. Wave profiles at t and t + At 
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Shoreline 

Figure 3. Elements in contact with a shoreline 

In the calculation of the second term on the right-hand side of equation (8) the gradient of U i  is 
constant in each finite element because the interpolation function of velocity Ui is linear. The 
gradient of U i  at nodal points in contact with the shoreline can be calculated as the average value 
over the elements around the nodal point as 

where N is the node number, E(L) is the number of the Lth element which contacts node N and 
K is the total number of elements connecting with node N .  

In the case shown in Figure 3 the velocity gradient can be calculated in the following manner. 
Nodes from A to E are the nodal points which contact the shoreline. Point C is taken up as an 
example. Nodal point C is connected with the elements numbered 3, 4, 5 and 6. The velocity 
gradient of nodal point C is calculated by dividing the total sum of the velocity gradients of 
elements 3, 4, 5 and 6 by four, which is the total number of elements which connect with nodal 
point C. 

4. AUTOMATIC MESH GENERATION TECHNIQUE 

There is a computational advantage in this method that the movement of the shoreline is 
expressed by the movement of the nodal points at the wave front. On the other hand, there is 
a disadvantage that the area of the finite elements which contact the shoreline varies with time. If 
the wave moves upwards to the beach, the nodal points on the shoreline must move upwards and 
the size of elements increases. Conversely, if the wave moves downwards, the size of elements 
decreases. In an ordinary finite element analysis, elements which are too large or too small cause 
numerical instability and inaccurate computation. 

In order to overcome these difficulties, regeneration of the finite elements is carried out by an 
automatic mesh generation technique which is newly developed in this paper, i.e. if the size of an 
element becomes larger than the standard, the element is divided into two elements, and if the size 
of an element becomes smaller than the standard, the element is eliminated from the computa- 
tional domain. By this technique the finite element idealization adapts the domain to be analysed 
and the size of elements can be kept constant as far as possible. The following is an explanation of 
the automatic mesh generation technique. 



TWO-DIMENSIONAL WAVE RUN-UP ANALYSIS 1223 

Shoreline 

1 6 

7 1 1  

Figure 4. Example of mesh auto-generation technique 

( 1  1 ( 2 )  ( 3 )  ( 4 )  

1 )  CLASS ( 1 )  A-B-CIA-C-D 
2 )  CLASS ( 2 )  A-B-Di B-C-D 
3) CLASS ( 3 )  A-C-D 
4 )  CLASS ( 4 )  A-B-D 

Figure 5. Classification of elements 

Table I. Example of classification of elements 
~~ 

Element column Class 

a 1 
b 3 
C 2 
d 4 
e 1 

4.1. Determination of the moving boundary 

The mesh shown in Figure 4 is used as an example to explain the automatic mesh generation 
technique. Nodes numbered from 1 to 6 are the nodes which contact the shoreline. As shown in 
Figure 5, the elements which contact the shoreline are classified into four classes based on the 
manner of connection of nodal points to the nearest shoreline. The automatic mesh generation 
can be effectively applied after this classification. 

In Figure 5, side A-D expresses the shoreline and nodal points A and D are moved on the basis 
of equation (10). The case shown in Figure 4 is classified as in Table I. 

4.2. Generation of elements 

In the case of a wave moving upwards as shown in Figure 6, the lengths of sides A-B and D-C 
extend. If either side A-B or D-C has a length L which is larger than the standard length L,, the 
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Figure 6. Generation of an element 

Figure 7. Elimination of an element 

element is split into two elements and the size is kept as constant as possible. Figure 6 is the case 
of CLASS (1). The length L of D-C is larger than the standard length L, and the element is split 
into two elements ACD and ADE. 

4.3. Elimination of elements 

In the case of a wave moving downwards as shown in Figure 7, the lengths of sides A-B and 
D-C are shortened. If either side A-B or D-C has a length L which is smaller than half the 
standard length L,, the element is eliminated. Figure 7 is the case of CLASS (3). The length L of 
A-B is smaller than half the standard length L, and the element marked ‘0’ is eliminated. 

Figures 6 and 7 are two examples of automatic mesh generation. All possible cases of automatic 
mesh generation appearing in calculations are shown in Figure 8, where parameters a and b in 
CASE (a, b) have the following meaning. 

a=O +Ls<AB<2L,, 
a= l :  AB>2Ls, 
a=2: AB<*L,, 

b=O 4LS<CD<2L,, 
b = l :  CD>2LS, 
b = 2  CD<)L,, 

where AB and CD are the lengths of sides A-B and C-D respectively. 

4.4. Interpolation of water depth 

The nodal points at the shoreline are moved according to the movement of fluid. It is necessary 
to correct the data of depth for the moved nodal points at each time step.35 

Assume that the shoreline has moved as shown in Figure 9, where the line from A to E is the 
shoreline. Solid lines represent the finite element idealization used for the computation of fluid 
and dotted lines that used for the interpolation of water depth. If nodal point C is located on 
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CASE ( 1 , O )  a=l  : AB > =  2 L s  b=O : 1 / 2 L s  < CD < ~ L s  

C L A S S (  1 ) C L A S S (  2 )  C L A S S (  3 ) - D 

C 

C L A S S (  4 ) 

CASE ( 0 , l )  a=O : 1 / 2 L s  c AB c 2Ls b=l : CD )I 2 L s  

C L A S S (  1 ) C L A S S (  2 ) C L A S S  ( 3 ) C L A S S ( 4 )  

A 

B 

Figure 8(a). Mesh auto-generation pattern 
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CASE ( 1 , l )  a-1 : AB ) =  2Ls b=l : CD > =  2Ls 

AN: B 

C L A S S (  1 ) C L A S S (  2 ) C L A S S (  3 )  C L A S S (  4 )  

CASE (2,O) a=2 : AB < =  1/2Ls b=O : 1/2Ls < CD < 2Ls 

C L A S S (  1 ) C L A S S (  2 )  C L A S S (  3 )  C L A S S (  4 )  

Figure 8(b). Mesh auto-generation pattern 
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CASE (2,l) a=2 : ?iB < =  1/2Ls b=l : CD > =  2Ls 

C L A S S (  1 ) C L A S S (  2 )  C L A S S (  3 )  C L A S S ( 4 )  

4 

CASE (0,2) a 4  : 1/2Ls < A 8  2Ls b=2 : CD < =  1/2Ls 

C L A S S (  1 ) C L A S S ( 2 )  C L A S S (  3 )  C L A S S ( 4 )  

Figure 8(c). Mesh auto-generation pattern 
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D 
C 

C L A S S (  1 ) 

D 
B :B: Bb C 

C L A S S (  2 ) C L A S S (  3) C L A S S  ( 4 )  

E n + 

CASE (2,2) a=2 ; AB < =  1/2LS b-2 : CD < =  1/2LS 

C L A S S (  1 )  C L A S S (  2 )  C L A S S (  3 )  

+ 
c Bmc Bn 

Figure 8(d). Mesh auto-generation pattern 
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hl h2 

- Finite element idealization used in computation 
A - E Nodal points on the shoreline 
a - f Element number 

Finite element idealization used in interpolation of water 
depth 

Figure 9. Interpolation of water depth 

element d, then element d is the finite element which is used for the interpolation of water depth at 
C .  The depth of nodal point C is corrected by the interpolation function of element d as 

(12) 
where mi is the linear interpolation function and hi is the depth of each nodal point of element d. 
The water depth h, is the corrected depth of nodal point C. 

h,=@.l(x,  Y)hl +@z(x, Y ) h 2 + @ 3 k  yP3 ,  

5. NUMERICAL EXAMPLES 

5.1. Comparison with experimental results 

To investigate the validity of the method presented in this paper, a comparison with experi- 
mental results13 has been carried out. The experiments were performed in a long wave channel of 
uniform slope connected with a horizontal bed (channel length 150 m, including length of beach 
slope, 25 m; width 6 m; depth 1 m). Experimental waves were generated by a pneumatic-type 
wave generator located at the end of the channel. The beach slope is tan a= 1/30. Experiments 
were carried out changing the water depth, the wave amplitude and the wave period. 

The computational model is shown in Figure 10(a). Figure 10(b) is the finite element idealiza- 
tion in the still water state, where the lengths of finite elements are 1.05 m with h = 35 cm, 1.5 m 
with h = 3 0  cm and 1.5 m with h=25 cm. Fifty cases of calculation were carried out as shown in 
Table 11. 

The boundary conditions used are as follows: 

v = O  on a-d and b-c, 



1230 T. OKAMOTO ET AL. 

Table 11. Wave conditions and comparison of calculated and experimental results 
~~ ~ ~~~ 

Wave conditions Experimental results Calculated results 

Case h(cm) T/2(s) A(cm) H’(cm) R(cm) R/H‘ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
30 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
35 
35 
35 
35 
35 
35 
35 
35 
30 
30 
30 
30 
30 
30 
30 
30 
30 
25 
25 
25 
25 
25 
25 
35 

120 
160 
40 
60 
75 
70 
75 
80 
60 
75 
60 

160 
120 
180 
50 
60 
45 
60 
80 
60 
80 

100 
70 

160 
115 
120 
55 
60 
80 
65 
80 

120 
80 

120 
120 
120 
110 
160 
160 
120 
180 
120 
180 
150 
180 
140 
120 
120 
120 
160 

6.0 
5.3 
7 5  

10.3 
10.0 
9.0 
8.7 
9.0 
6.7 
7.0 
5.6 
8.2 
6.0 
8.7 
70 
6.0 
5.9 
6.0 
7.9 
5.7 
7.0 
7.5 
5.1 
8.8 
8.1 
5.7 
9.6 
7.0 
9.0 
6.3 
7.6 
9.0 
4.7 
60 
8.5 
7.1 
6.0 
8.6 
7.0 
9.3 
8.6 
8.7 
5.6 
9.8 
5.8 

11.5 
9.0 
8.6 
8.7 
9.3 

13.0 
12.7 
10.0 
16.3 
15.9 
15.0 
16.5 
17.5 
11.0 
11.6 
10.0 
15.0 
120 
16.0 
14.0 
9.8 
9.5 

10.4 
14.1 
11.0 
12.0 
12.9 
8.7 

16.0 
160 
11.1 
18.0 
15.6 
19.0 
11.5 
16.0 
18.5 
10.8 
13.5 
18.5 
15.4 
13.0 
18.9 
15.4 
19.1 
18.4 
17.9 
12.0 
20.8 
125 
25.2 
19.6 
18.7 
19.0 
20.3 

13.9 
11.6 
20.0 
26.0 
20.1 
21.1 
18.7 
24.0 
15.0 
16.4 
14.5 
17.4 
13.2 
17.5 
16.8 
14.5 
15.4 
149 
17.8 
13.3 
15.2 
15.5 
12.1 
17.5 
163 
13.3 
24.6 
18.7 
21.5 
14.4 
172 
205 
13.0 
14.0 
17.3 
14.4 
17.3 
20.6 
18.4 
19.5 
18.9 
18.9 
13.0 
21.8 
10.3 
223 
18.7 
20.8 
20.5 
20.1 

1.07 
0.9 1 
2.00 
1.60 
1.26 
1.41 
1.13 
1.37 
1.36 
1.41 
1,45 
1.16 
1.10 
1.09 
1-20 
1.48 
1.62 
1.43 
1.26 
1.21 
1.27 
1.20 
1-39 
1.09 
1.03 
1.20 
1.37 
1.20 
1.13 
1.25 
1.08 
1.1 1 
1.20 
1.04 
0.94 
0.94 
1.33 
1.09 
1.20 
1.02 
1.03 
1.06 
1.08 
1.05 
082 
0.89 
0.95 
1.11 
1.08 
0.99 

H’(cm) R(cm) RIH’ 
- 

12.0 
107 
12.1 
20.4 
20.7 
18.5 
17.9 
18.7 
13.1 
14.2 
109 
16.7 
12.0 
17.7 
12.9 
11.8 
10.4 
11.8 
165 
11.2 
14.4 
15.4 
10.2 
18.0 
16.3 
11.4 
20.1 
13.6 
17.8 
12.9 
15.1 
16.7 
9.2 

11.5 
17.1 
14.2 
11.9 
175 
14.2 
18.7 
17.5 
17.5 
11.3 
20.1 
11.8 
23% 
18.2 
17.3 
17.5 
17.3 

12.4 
10.8 
21.0 
29.7 
26.1 
23.5 
21.8 
22.0 
17.2 
16.6 
13.8 
16.9 
12.4 
18.0 
18.8 
15.0 
15.3 
15.0 
19.2 
14.1 
16.5 
16.0 
11.7 
18.2 
16.8 
11.8 
31.0 
19.3 
22.1 
16.4 
17.5 
17.5 
9.7 

11.9 
17.7 
14.7 
12.4 
17.8 
14.4 
19.4 
17.8 
18.2 
11.4 
20.4 
11.9 
24.3 
1 8 4  
18.0 
18.2 
17.6 

1.03 
1.01 
1.74 
1.46 
1.26 
1.27 
1.22 
1.18 
1.31 
1.17 
1-27 
1.01 
1.03 
1.02 
1.46 
1.27 
1.47 
1.27 
1.16 
1.26 
1.15 
1.04 
1-15 
1.01 
1.03 
1.04 
1.54 
1.42 
1.24 
1.27 
1.16 
1.05 
1.05 
1.04 
1.04 
1.04 
1.04 
1.02 
1.01 
1.04 
1.02 
1.04 
1.01 
1.02 
1.01 
1.03 
1.03 
1.04 
1.04 
1.02 
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125 rn - 7.5 m-10.5 m 

(a) Computational model 

/ / / / / / / / / / / / / / / / / / / / / / / / / / I  

125 m I 7.5 m-10.5 m 
1325 m - 135.5 m 

(b) Finite element idealization 

Figure 10. Computational model and finite element idealization 

where u and v are the velocities in directions x and y respectively, A is the amplitude (half-wave 
height) of sinusoidal forced oscillation, T is the wave period, q is the water elevation and g is the 
gravitational acceleration. Equations (13) correspond to the progressive wave condition. The 
initial conditions of velocity and water elevation are assumed to be zero for all domains analysed. 
A selective lumping parameter e=0.9 and a time increment At =0-05 s are employed. 

The experimental and calculated results are shown in Table 11. R is the run-up height and H’ is 
the maximum water elevation at the edge of the slope as shown in Figure 11. Figures 12 and 13 
show the comparison of experimental and calculated results for H’ and R respectively. Open 
circles represent the computed results, which are close to the experimental results shown by the 
solid line. Four examples of the wave-form calculated by this method are shown in Figures 14 and 
15. Figure 14 shows two cases based on the same wave periods and water depths but different 
amplitudes. Figure 15 shows two cases based on the same wave amplitudes and water depths but 
different wave periods. 

In order to examine numerically the influence of forced oscillation amplitude, further calcu- 
lations have been carried out. Figure 16 shows the calculated relationship between RIH‘ and 1/L, 
where L is the wavelength (L  = J(gh)  T, where T is the period of forced oscillation) and 1 is the 
horizontal length of the slope as shown in Figure 11 in which the amplitude (half-wave height) of 
forced oscillation is changed from A = 2.5 to 15.0 cm. The water depth is 30 cm. Six examples of 
the wave-form calculated by this method are shown in Figures 17 and 18. Figure 17 shows three 
cases where the wave period is 60 s and the amplitude varies between 2.5 and 15.0 cm. Figure 18 
shows three cases where the wave period is 130s and the amplitude varies between 2.5 and 
15.0 cm. 

5.2. Run-up analysis of non-uniform slope 

As all example of the analysis of a non-uniform slope beach, a run-up analysis of a composite 
slope beach is carried out. Figure 19(a) shows the computational model used for the analysis. The 
beach slopes are tan a1 = 1/30, tan a2 = O  and tan a3 = 1/60 and the slope lengths are l1 = 12 m and 
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25 30 35 40 
(an) 

Calculated result 

Figure 12. Comparison between computed and experimental results for H' 

l 2  = 6 m. The water depth h is 30 cm. At the entrance to the channel a-b, sinusoidal forced 
oscillation is imposed. The amplitude A (half-wave height) is 10 cm and the wave period Tis 100 s. 
Figure 19(b) is the finite element idealization in the still water state, where the lengths of finite 
elements are 1.5 m. 
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(cm) 
40 I 

35 - 

30. 

25 - 

20 

15- 

10 

(&I 
Calculated result 
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Figure 14. Wave profiles for cases 11 and 4 

The boundary conditions used are as follows: 

v=O on a-d and b k ,  

q = A sin(2n/T)t on a-b, 

u = q J [ g / ( h + q ) ]  on a-b. 

Equations (14) correspond to the progressive wave condition. 
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Figure 16. Claculated relationship between R/H’ and / / L  

The initial conditions of velocity and water elevation are assumed to be zero for all domains 
analysed. A selective lumping parameter e = 0.9 and a time increment At = 005 s are employed. 
The wave-forms from time t =71 to 99 s are shown in Figure 20. 

5.3. Wave run-up analysis of a channel of wedge-shaped cross-section 

As an example of two-dimensional analysis, a wave run-up analysis of a channel of wedge- 
shaped cross-section has been carried out. Figure 21 (a) is the initial finite element idealization in 
the still water state. Figures 21 (b)-21 (d) are the cross-sections A-A‘, B-B’ and C-C’ respectively. 
The wave height is 2 m and the wave period is 10 s on the boundary a-b. 

The boundary conditions used are as follows: 

v = O  on a-d and b-c, 

v = A  sin(2nlT)t on a-b, 

u = v J [g/(h + q)]  on a-b. 
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Figure 18. Wave profiles (wave period 130 s) 

The initial conditions of velocity and water elevation are assumed to be zero for the domain 
analysed. A selective lumping parameter e = 0.9 and a time increment At = 0.01 s are employed. 

Figures 22 and 24 show the cases where the wave is moving upwards and downwards 
respectively, while Figure 23 shows the intermediate case where upward and downward waves are 
interfering with each other. In Figures 22-24 parts (aHc) are the mesh configuration, velocity 
vector and water elevation respectively. From these figures the analysis presented in this paper is 
seen to be adaptable to channels of wedge-shaped cross section. 
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Figure 19. Computational model and finite element idealization 

5.4. Analysis of tsunami run-up caused by the I983 Nihonkai-Chubu earthquake 

The method has been applied to an actual tsunami run-up problem. The wave run-up of the 
tsunami caused by the 1983 Nihonkai-Chubu earthquake is analysed. The area to be analysed is 
the neighborhood of the estuary of the Mizusawa river (Akita Prefecture in Japan) where the 
highest run-up wave height was recorded.36 The size of the domain to be analysed is an area 
1200m wide and 500m long as shown in Figure 25. The finite element idealization and the 
topography of the land are also shown in this figure. The slope of the sea bottom is almost 
uniform at 1/100. Solid lines indicate the finite element idealization used for the computation of 
fluid and dotted lines that used for the interpolation of water depth. Line a 4  is the shoreline. The 
lengths of finite elements are from 12.5 to 50 m. 

The calculation is carried out by imposing the incident wave on the offshore boundary b. The 
wave imposed is of 6 m height and 600 s period. These conditions are obtained from the 
calculations in References 31, 33 and 34. 

The boundary conditions used are as follows: 

u = O  on a-b and 1.4, 

r,~ = Asin(2z/T)t on b x ,  (164 

~='IJrs/@+r,I)l on b*- (16b) 
The initial conditions of velocity and water elevation are assumed to zero in the domain 

analysed. A selective lumping parameter e = 0.9 and a time increment At = 0.3 s are used for the 
computation. 

Figures 26(a) and 26(b) show the computed results at t = 270 and 300 s respectively. At t = 270 s 
the tsunami run-up wave on the left and right sides of the domain arrives at the highest position 
whereas that in the middle part is still moving upwards. At t = 300 s the wave on the left and right 
sides is moving downwards and that in the middle part arrives at the highest position. The run-up 
wave is influenced considerably by the topography of the land. Figure 27 shows the comparison 
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Figure 20. Wave configurations from time t = 7 1  to 99 s 
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Figure 21. Computational model and finite element idealization 
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Figure 22. Computed results for wave moving upwards 
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Figure 23. Computed results for upward and downward waves interfering 
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Figure 24. Computed results for wave moving downwards 
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L SEA 1200 m 

Figure 25. Finite element idealization and topography of the land 

between the recorded and computed flood area. The flood area is an envelope of the highest 
positions of the run-up wave. The agreement is not as good as in the case of one- dimensional 
channel experiments. The reason seems to be the insufficiency of detailed information on both the 
topography of the land and the incident tsunami wave imposed on the offshore boundary. If more 
detailed information were used, better agreement could be obtained. 

6. CONCLUSIONS 

This paper presents a new finite element method for the analysis of the wave run-up problem. The 
conclusions derived are as follows. 

(1) It is easy to compute the moving boundary problem by this method because the finite 
element region which is varying with time coincides with the region occupied by fluid. 

(2) The numerical results by this method agree well with the experimental results for a channel 
of uniform slope. 

(3) It is shown by numerical examples that the automatic mesh generation technique is 
effective for the two-dimensional analysis of moving boundary problems. 

(4) This method is adaptable to the analysis of wave run-up problems with complicated beach 
topography, e.g. tsunami run-up analysis. 

(5) In the case of an actual tsunami run-up analysis, detailed information about the land 
topography and incident wave is necessary. 
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(a) t-270 sec. 
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Figure 26. Computed results at t = 270 and 300 s 
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Figure 27. Comparison of the recorded flood area with the calculated result 
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